
Dr. Mrs. Saylee Gharge et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 1), May 2014, pp.54-60

www.ijera.com 54 | P a g e

Percon8 Algorithm for Random Number Generation

Dr. Mrs. Saylee Gharge*, Mr. Honey Brijwani**, Mr. Mohit Pugrani**, Mr.

Girish Sukhwani**, Mr. Deepak Udherani**
*(Associate Professor, V. E. S. Institute of Technology, Mumbai)

** (Student, V. E. S. Institute of Technology, Mumbai)

ABSTRACT
In today’s technology savvy world, computer security holds a prime importance. Most computer security

algorithms require some amount of random data for generating public and private keys, session keys or for other

purposes. Random numbers are those numbers that occur in a sequence such that the future value of the

sequence cannot be predicted based on present or past values. Random numbers find application in statistical

analysis and probability theory. The many applications of randomness have led to the development of random

number generating algorithms. These algorithms generate a sequence of random numbers either computationally

or physically. In our proposed technique, we have implemented a random number generation algorithm

combining two existing random number generation techniques viz. Mid square method and Linear Congruential

Generator

Keywords- Linear Congruential Generator, Mid Square Random Number Generation Technique, Permutation

Matrix, Maurer's Universal Statistical Test

I. INTRODUCTION
A number of network security algorithms

based on cryptography make use of random numbers.

For example,

 Key distribution and reciprocal

authentication schemes: In such schemes, two

communicating parties cooperate by exchanging

messages to distribute keys and/or authenticate

each other. In many cases, nonces are used for

handshaking to prevent replay attacks. The use

of random numbers for the nonces frustrates an

opponent’s efforts to determine or guess the

nonce.

 Session key generation: A secret key for

symmetric encryption is generated for use for a

short period of time. This key is generally called

a session key.

 Generation of keys for the RSA public-key

encryption algorithm

 Generation of a bit stream for symmetric stream

encryption

These applications give rise to two distinct

and not necessarily compatible requirements for a

sequence of random numbers: randomness and

unpredictability. [1]

1.1. TRNGs, PRNGs, PRFs

Cryptographic applications typically make

use of algorithmic techniques for generation of

random numbers. These algorithms are deterministic

and therefore produce sequences of numbers that are

not statistically random. However, if the algorithm is

good, the resulting sequences will pass many

reasonable tests of randomness. Such numbers are

referred to as pseudorandom numbers (PRNGs).

The many applications of randomness have led to the

development of random number generating

algorithms, typically PRNGs.

A popular approach to Random Number

Generation is Blum Blum Shub Generator[2] wherein

two prime numbers p and q are chosen such that they

give a remainder of 3 on division by 4. Then a

Random Number is generated such that it is relatively

prime to product of p and q. This is processed as long

as we require the Random Numbers.

RC4 is a stream cipher designed by Ron

Rivest for RSA security. Results show that the period

is overwhelmingly more than 10
100

 [3]. RC4 is used

in SSL/TLS for communication between web

browsers and servers. It is also used in WEP and

newer WiFi Protected Access(WPA).

Best treatment of PRNGs can be found in

Knuth, D.[4]. An excellent survey of various PRNGS

can be found at Ritter, T.[5]

Figure 1 compares a true random number

generator (TRNG) with two forms of pseudorandom

number generators. A TRNG takes as input an

entropy source that is effectively random. In essence,

the entropy source is drawn from the physical

environment of the computer and could include

things such as keystroke timing patterns , disk

electrical activity and instantaneous values of the

system clock.

RESEARCH ARTICLE OPEN ACCESS

Dr. Mrs. Saylee Gharge et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 1), May 2014, pp.54-60

www.ijera.com 55 | P a g e

In contrast, a PRNG takes as input a fixed

value, called the seed, and produces a sequence of

output bits using a deterministic algorithm. Typically,

as shown, there is some feedback path by which

some of the results of the algorithm are fed back as

input. The important thing to note is that the output

bit stream is determined solely by the input value, so

that an adversary who is aware of the algorithm and

the seed can reproduce the entire bit stream.

Fig 1. Random and Pseudo Random Number

Generators

Fig 1 shows two different forms of PRNGs:

 Pseudorandom number generator: An

algorithm that is used to produce an open ended

sequence of bits is referred to as a PRNG.A

common application for an open ended sequence

of bits is as input to a symmetric stream cipher.

The length of output bits is not fixed.

 Pseudorandom function (PRF): A PRF is used

to produce a pseudorandom string of bits of

some fixed length. Examples are symmetric

encryption keys and nonces. Typically, the PRF

takes as input a seed plus some context specific

values, such as a user ID or an application ID.

Other than the number of bits produced,

there is no difference between a PRNG and a PRF.

II. PRNG REQUIREMENTS
2.1. RANDOMNESS

In terms of randomness, the requirement for

a PRNG is that the generated bit stream appear

random even though it is deterministic. It should

exhibit following characteristics:

 Uniformity: At any point in the generation of a

sequence of random or pseudorandom bits, the

probability of occurrence of a zero or one is 1/2.

 Scalability: Any test applicable to a sequence

can also be applied to sub sequences extracted at

random. Hence, any extracted subsequence

should pass any test for randomness.

 Consistency: The behaviour of a generator must

be consistent across starting values (seeds). It is

inadequate to test a PRNG based on the output

from a single seed or an TRNG on the basis of

an output produced from a single physical

output.

2.2. UNPREDICTABILITY

A stream of pseudorandom numbers should exhibit

two forms of unpredictability:

 Forward unpredictability: If the seed is

unknown, the next output bit in the sequence

should be unpredictable irrespective of any

knowledge of previous bits.

 Backward unpredictability: It should also not

be feasible to determine the seed from

knowledge of any generated values. No

correlation between a seed and any value

generated from that seed should be evident

2.3. SEED REQUIREMENTS

For cryptographic applications, the seed that

serves as input to the PRNG must be secure. Because

the PRNG is a deterministic algorithm, if the

adversary can deduce the seed, then it is highly likely

that the output can be determined. Therefore, the seed

itself must be a random or pseudorandom number.

Typically, the seed is generated by a TRNG,

as shown in Figure 2. One may wonder, if a TRNG is

available, why it is necessary to use a PRNG. If the

application is a stream cipher, then a TRNG is not

practical. The sender would need to generate a

keystream of bits as long as the plaintext and then

transmit the keystream and the ciphertext securely to

the receiver.

Fig 2. Generation of Seed Input to PRNG

III. MID SQUARE METHOD
The mid square method was proposed by

Von-Newmann and Metropolis in 1946. In this

method of random number generation, an initial seed

Conversion to

binary

Deterministic

Algorithm

Deterministic

Algorithm

Entropy Source Seed

Seed

Random Bit Stream Pseudorandom

Bit Stream

Pseudorandom

Bit Stream

TRNG PRNG PRF

Content Specific

Value

True Random

Number Generator

True Random

Number Generator

Entropy Source

Seed

Pseudorandom

Bit Stream

Dr. Mrs. Saylee Gharge et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 1), May 2014, pp.54-60

www.ijera.com 56 | P a g e

is assumed and that number is squared. The middle

four digits of the squared value are taken as the first

random number.

Next, the random number which is

generated most recently is again squared and the

middle four digits of this squared value are assumed

as the next random number. This is to be repeated to

generate the required number of random numbers.

3.1. FLOWCHART

Fig 3 shows the flowchart for generation of

Random Numbers using Mid Square Algorithm.

The Loop continues for as long as the Required

Random Numbers are generated.

The process is relatively fast as all it takes is

computing square of a number and truncation.

Fig 3. Flowchart for Mid Square Algorithm

Consider the following example

Table 1. Sample Random Numbers Generated

using Mid Square Method

Serial No. n (4-digit) n
2

1 8765 76825225

2 8252 68095504

3 0955 00912025

4 9120 83174400

5 1744 03041536

6 0415 00172225

7 1722 02965284

8 9652 93161104

3.2. LIMITATIONS

 Relatively slow

 Statistically unsatisfactory

 Sample of random numbers may be too short

 For a generator of n-digit numbers, the period

can be no longer than 8
n

 If the middle 4 digits are all zeroes, the generator

then outputs zeroes forever. If the first half of a

number in the sequence is zeroes, the subsequent

numbers will be decreasing to zero

IV. LINEAR CONGRUENTIAL

GENERATOR[6]
A widely used technique for pseudorandom

number generation is an algorithm first proposed by

Lehmer[7], which is known as the linear congruential

method.

The algorithm is parameterized with four

numbers, as follows:

m the modulus m > 0

a the multiplier 0 < a < m

c the increment 0 ≤ c < m

X0 the starting value, or seed 0 ≤ X0 < m

The sequence of random numbers is obtained via the

following iterative equation:

Xn+1 = (aXn + c)mod m

If m, a, c, X0 and are integers, then this technique will

produce a sequence of integers with each integer in

the range 0 ≤ Xn < m

The selection of values for a, c and m is

critical in developing a good random number

generator. For example, consider a = c = 1 . The

sequence produced is obviously not satisfactory. Now

consider the values a = 7 c = 0 m = 32 and X0 = 1 .

This generates the sequence {7, 17, 23, 1, 7, etc.} ,

which is also clearly unsatisfactory. Of the 32

possible values, only four are used; thus, the

sequence is said to have a period of 4. If, instead, we

change the value of a to 5, then the sequence is {5,

25, 29, 17, 21, 9, 13, 1, 5, etc.} , which increases the

period to 8.

Input a 4-digit number N

Set value of i to 1

Square the 4-digit number n

Store the value in X and add zeros

to have total of 8 characters in X

Select middle 4 characters of X

and store them in n

Is i=number of

random numbers

required

Increment i

STOP

START

Dr. Mrs. Saylee Gharge et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 1), May 2014, pp.54-60

www.ijera.com 57 | P a g e

We would like m to be very large, so that there is the

potential for producing a long series of distinct

random numbers. A common criterion is that m be

nearly equal to the maximum representable

nonnegative integer for a given computer.

Thus, a value of m near to or equal to 2
31

 is

typically chosen.

Park, S. and Miller, K proposed three tests

to be used in evaluating a random number

generator:

T1: The function should be a full-period generating

function. That is, the function should generate all the

numbers between 0 and m before repeating.

T2: The generated sequence should appear random.

T3: The function should implement efficiently with

32-bit arithmetic.

With appropriate values of a, c, and m, these

three tests can be passed. With respect to T1, it can

be shown that if m is prime and c= 0 , then for certain

values of a the period of the generating function is m-

1, with only the value 0 missing.

For 32-bit arithmetic, a convenient prime value of m

is 2
31

 - 1 . Thus, the generating function becomes

Xn+1 = (aXn + c)mod (2
31

 - 1)

Of the more than 2 billion possible choices for a, only

a handful of multipliers pass all three tests. One such

value is a = 7
5
=16807, which was originally selected

for use in the IBM 360 family of computers[8]. This

generator is widely used and has been subjected to a

more thorough testing than any other PRNG. It is

frequently recommended for statistical and

simulation work.

4.1. FULL PERIOD

The period of a general LCG is at most m,

and for some choices of factor a much less than that.

Provided that the offset c is nonzero, the LCG will

have a full period for all seed values if and only if:

 c and m are relatively prime,

 (a-1) is divisible by all prime factors of m,

 (a-1) is a multiple of 4 if m is a multiple of 4.

These three requirements are referred to as

the Hull-Dobell Theorem. While LCGs are capable

of producing pseudorandom numbers which can pass

formal tests for randomness, this is extremely

sensitive to the choice of the parameters c, m, and a.

4.2. STRENGTHS

 The strength of the linear congruential algorithm

is that if the multiplier and modulus are properly

chosen, the resulting sequence of numbers will

be statistically indistinguishable from a sequence

drawn at random (but without replacement) from

the set 1, 2, ... , m - 1

 LCGs are fast and require minimal memory

(typically 32 or 64 bits) to retain state. This

makes them valuable for simulating multiple

independent streams.

4.3. LIMITATIONS

 If an opponent knows that the linear congruential

algorithm is being used and if the parameters are

known (e.g., a = 7
5
, c = 0, m = 2

31
 - 1), then once

a single number is discovered, all subsequent

numbers are known.

 Even if the opponent knows only that a linear

congruential algorithm is being used, knowledge

of a small part of the sequence is sufficient to

determine the parameters of the algorithm.

Suppose that the opponent is able to determine values

for X0, X1, X2, and X3.

Then;

X1 = (aX0 + c)mod m

X2 = (aX1 + c)mod m

X3 = (aX2 + c)mod m

These equations can be solved for a, c and m

V. PERCON8 ALGORITHM
PERCON8 is named so as its uses

Permutation-Concatenation to generate 8 Random

Numbers in one Round.PERCON8 Algorithm

combines the advantages of Mid Square Random

Number Generation technique (4 digit input) and

Linear Congruential Generator (m=32) while

exploiting their limitations to its use. It is a multi-

round algorithm that can be used for generation of

Random Numbers. The number of rounds are not

fixed, that is, they depend on the values of seed that

are used as inputs in every round, until the seed

becomes zero. Each round generates a sequence of

eight 8- digit Random Numbers. As the technique

employs Linear Congruential Generator which

produces serially correlated Random Numbers, a

Permutation Matrix is used to decorrelate the

sequence thereby rendering the estimation nearly

impossible.

5.1. SEED GENERATION

This algorithm takes the initial seed

generated by a TRNG, that is, an entropy source, and

uses the Mid Square Algorithm to generate the seeds

required in the following rounds. The seed generated

by TRNG is squared and appended with extra zeros

so that we have 8 characters. The middle 4 digits

serve as the seed for the following round and the

process continues until the seed becomes zero after

which the algorithm desires another seed form an

entropy source. Each round generates a sequence of

eight 8-digit Random Numbers.

http://en.wikipedia.org/wiki/Periodic_function
http://en.wikipedia.org/wiki/If_and_only_if
http://en.wikipedia.org/wiki/Relatively_prime
http://en.wikipedia.org/wiki/Prime_factor
http://en.wikipedia.org/wiki/Pseudorandom_numbers
http://en.wikipedia.org/wiki/Tests_for_randomness

Dr. Mrs. Saylee Gharge et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 1), May 2014, pp.54-60

www.ijera.com 58 | P a g e

5.1.1. FLOWCHART

Fig 4. Flowchart for Seed Generation

5.2. ROUND DESCRIPTION

Each round uses Linear Congruential

Generator as its function.

Suppose m=32 and values of a and c, as mentioned in

section 4, are taken such that maximum period of 32

is achieved.

Xn+1 = (aXn + c)mod m

The value Xn is the value of seed generated

in round 1, as mentioned in section 5.1. This

produces a sequence of 32 (maximum period

assumed) serially correlated Random Numbers. To

decorrelate the sequence, the generated sequence is

permuted using the Permutation Matrix thereby

producing 32 decorrelated Random Numbers. These

32 numbers are arranged in set of 4 numbers

(2,3,17,19 becomes 02031719) to produce an 8 digit

Random Number using modulo 32 arithmetic. Thus,

we obtain eight 8-digit Random Numbers.

Consider the following example:

Fig 5. Example of PERCON8 Algorithm

5.2.1. PERMUTATION MATRIX

The output bits obtained from the Linear

Congruential generator are serially correlated as the

next number is generated using the previous output as

one of the function input. To decorrelate the Output

Data, a Permutation Matrix is used, which shuffles

the output values in a random order, thereby

producing statistically random and independent

output. Decorrelation , as a property, is used to

eliminate the dependence of output values on each

other which makes the randomness vulnerable.

If X[] is the output matrix which stores the output (32

values, assuming maximum period) of the Linear

Congruential Generator, then on Permutation the

output matrix Y[] has the following value.

Fig 6. Permutation Matrix

START

Initial Seed form TRNG

Squared and truncated or

expanded to 8 characters

Middle 4 digits serve as

seed for Round n

Round n=1

Is Seed=0

YES NO

 OUTPUT OF LINEAR CONGRUENTIAL GENERATOR:

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31

AFTER PERMUTATION:

1,16,22,27,15,26,3,11,7,19,28,12,13,2,23,30,8,20,25,32,4,14,29,17,6,9,21,31,10,24,5,18

(NUMBERS ARE SHUFFLED ACCORING TO THE PERM UTATION MATRIX)

EIGHT 8-DIGIT RANDOM NUMBERS:

01162227

15260311

07192812

13022330

08202532

04142917

06092131

10240518

Dr. Mrs. Saylee Gharge et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 1), May 2014, pp.54-60

www.ijera.com 59 | P a g e

VI. FLOWCHART

Fig. 7. Flowchart for PERCON8 Algorithm

VII. RESULTS
Turbo C implementation of the Program

Code with m=32, a=5 and c=1 and initial seed=5811

is shown below. Fig 7,8,9,10 show 32 8-digit random

numbers generated using PERCON8 algorithm

Fig 8. Random Numbers 1 through 8[9]

Fig 9. Random Numbers 9 through 16[9]

Fig 10. Random Numbers 17 through 24[9]

Fig 11. Random Numbers 25 through 32[9]

Following two tests determine the level of

randomness of random numbers:

 Frequency test: To determine whether the

number of 1s and 0s in binary representation of

output is nearly same. The frequency test on our

results yield a value of 0.47 which is

approximately equal to 0.5 thereby ensuring that

the number of 1s and 0s are nearly equal.

 Maurer's Universal Statistical Test: To detect

whether or not the sequence can be significantly

compressed. The Maurer's test on our results

yield that approximately 42% of bits of the

preceding value are repeated thereby making

compression possible.[10]

 START

INITIAL SEED FROM TRNG

n=1 for Round 1

SEED GENERATED FOR ROUND n

32 numbers generated using LCG

Permutation Matrix to produce

eight 8-digit random Numbers

IS SEED=0
YES NO

n+1

Dr. Mrs. Saylee Gharge et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 1), May 2014, pp.54-60

www.ijera.com 60 | P a g e

VIII. CONCLUSION
PERCON8 Algorithm clears the

Randomness Tests viz. Frequency Test and Maurer's

Universal Statistical Test with expected results. Also,

generation of 8-digit Random numbers using 32

modulo arithmetic can be achieved using PERCON8

algorithm. The criteria of unpredictability, that is,

inability to predict the seed from known output or

prediction of output from previous results, is clearly

met as the seed is generated afresh at the beginning

of every round and the output is decorrelated using

Permutation Matrix. This algorithm proves to be

faster than its competitors as it uses modulo 32

arithmetic. Thus, PERCON8 Algorithm proves to be

efficient as far as Random Number Generation is

considered. It can find applications in cryptographic

algorithms requiring Random Numbers viz. RSA

algorithm.

REFERENCES
[1] William Stallings, "Cryptography and

Network Security", 5th edition, Pearson

Education India

[2] Blum, L,; Blum, M.; and Shub, M. "A

Simple Unpredictable Random Number

Generator", SIAM Journal on Computing,

No. 2, 1986

[3] Robshaw, M. Stream Ciphers. RSA

Laboratories Technical Report TR-701, July

1995

[4] Knuth, D. The Art of Computer

Programming, Volume 2: Seminumerical

Algorithms. Reading, MA: Addison-Wesley,

1998

[5] Ritter, T. "The Efficient Generation of

Cryptographic Confusion Sequences"

Cryptologia, vol. 15 no. 2,1991.

www.ciphersbyritter.com/ARTS/CRNG2AR

T.HTM

[6] Jerry Banks, John S. Carson II, Barry L.

Nelson, "Discrete-Event System

Simulation", Pearson Education India.

[7] Lehmer, D. "Mathematical Methods in

Large-Scale Computing" Proceedings, 2nd

Symposium on Large-Scale Digital

Calculating Machinery, Cambridge:

Harvard University Press, 1951

[8] Lewis, P.; Goodman,A.; and Miller,J. "A

Pseudo- Random Number Generator for the

System/360." IBM Systems Journal No. 2,

1968

[9] Turbo C IDE to implement Random Number

Generation Using PERCON8 Algorithm

[10] Rukhin,A., et al. A Statistical Test Suite for

Random and PseudoRandom Number

Generators for Cryptographic Applications,

NIST Sp 800-22,August 2008

